Original Phoronix article which has all the individual benchmarks—weird that they didn’t link to it
There’s a variable that contains the number of cores (called cpus
) which is hardcoded to max out at 8, but it doesn’t mean that cores aren’t utilized beyond 8 cores–it just means that the scheduling scaling factor will not change in either the linear or logarithmic case once you go above that number:
/*
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
*
* This idea comes from the SD scheduler of Con Kolivas:
*/
static unsigned int get_update_sysctl_factor(void)
{
unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
unsigned int factor;
switch (sysctl_sched_tunable_scaling) {
case SCHED_TUNABLESCALING_NONE:
factor = 1;
break;
case SCHED_TUNABLESCALING_LINEAR:
factor = cpus;
break;
case SCHED_TUNABLESCALING_LOG:
default:
factor = 1 + ilog2(cpus);
break;
}
return factor;
}
The core claim is this:
It’s problematic that the kernel was hardcoded to a maximum of 8 cores (scaling factor of 4). It can’t be good to reschedule hundreds of tasks every few milliseconds, maybe on a different core, maybe on a different die. It can’t be good for performance and cache locality.
On this point, I have no idea (hope someone more knowledgeable will weigh in). But I’d say the headline is misleading at best.
Real babies in incubators
Original Declassified article